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The diffusion-controlled dissolution of spheres 
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The partial differential equations which describe the diffusion controlled behaviour of an 
isolated sphere growing or dissolving in conditions of spherical symmetry are presented. These 
have been solved numerically by methods already shown, by comparison with analytical 
solutions for growth from zero size, to give accurate results for growing spheres. Computed 
radius-time relations, time to dissolve completely and concentration profiles are illustrated and 
discussed. The influences of radial motion of the boundary and convection in the liquid are 
considered and shown to be important even for very high solubility. The only simple approxi- 
mation of any useful range of validity is the quasi-steady state model which is valid only for 
very low solubilities. The flat slab model which might be expected to apply for high solubilities 
is useful only for the early stages of dissolution because of the change in size of the sphere. 

1. In t roduct ion 
The dissolution of bubbles and other nearly spherical 
particles is important in many scientific and technical 
problems and these phenomena are often controlled 
by diffusion. The simplest model is an isolated station- 
ary sphere of pure solute surrounded by an infinite 
body of medium in which diffusion is assumed to 
control the behaviour of the system and spherical 
symmetry is maintained. The present authors have a 
particular interest in problems caused by gas bubbles 
in glass melting where the high viscosity of the 
melt means that rise to the surface does not rapidly 
remove all bubbles and growth or dissolution becomes 
important. 

Self-similar exact solutions for one component 
spheres growing from zero initial size were given 
by Scriven [1] in the classic paper on this subject. 
That type of solution has recently been extended 
by Cable and Frade to the growth of multi-component 
gas bubbles [2] and to growth of spheres with 
concentration-dependent diffusivity [3]. No such solu- 
tions exist for the dissolution of spheres because the 
partial differential equations cannot be cast into the 
required ordinary differential form. Efficient numeri- 
cal methods have therefore been developed for spheres 
of finite initial size and these have been carefully tested 
against analytical solutions for growth from zero for 
wide ranges of the parameters concerned [4]. In those 
cases transient effects, such as changes in the shape of 
the normalized concentration profile, persisted until 
spheres had grown to about four times their initial 
size. Such transients are thus likely to affect the whole 
course of dissolution. 

Approximate quasi-stationary solution have been 
obtained for spheres of finite initial size by analogy 
with the equivalent heat conduction problem for a 
sphere of constant size [5]. These solutions are reason- 
ably accurate for sufficiently low effective solubilities 
and have often been used to analyse dissolution of 
bubbles in liquids [6]. However, they become 
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increasingly poor as the effective solubility increases. 
Quasi-stationary and quasi-steady state approxi- 
mations (the latter ignoring transients and convection 
of solute) converge for very low solubilities but both 
types of approximation need to be tested against alter- 
native more accurate solutions to establish their 
ranges of validity. This can be done for growing 
spheres by comparing approximate solutions with 
exact solutions for growth from zero size but only 
numerical solutions of the partial differential 
equations are possible for dissolving spheres. The 
accuracy of some asymptotic solutions [7] also 
needs to be assessed by comparison with numerical 
results. 

Finite difference solutions have previously been 
obtained by a number of workers [7-10] but were not 
subjected to detailed tests. Sophisticated computing 
techniques are needed to ensure accuracy and 
efficiency. Implicit methods are usually superior to 
explicit finite difference schemes but their performance 
is also very dependent on the use of a suitable trans- 
formation of the space variable to immobilize the 
interface and choice of algorithms to select the appro- 
priate space and time mesh sizes. 

2. S t a t e m e n t  of  t h e  prob lem 
An isolated sphere of radius a containing a uniform 
and constant concentration of pure solute (cs) is sur- 
rounded by an infinite body of liquid; temperature and 
pressure are constant; the liquid is uniform and spheri- 
cal symmetry is maintained. Transfer of material to or 
from the sphere is controlled by Fickian diffusion and 
the dissolved concentration of solute in the liquid at 
the interface remains constant at c~; the diffusivity (D) 
of the solute in the liquid is also constant. Any effects 
of surface tension, viscosity, inertia or gravity are 
excluded. The partial molar volumes of solute (v) and 
solvent are constant but not necessarily equal. In these 
conditions diffusion of solute in the solution is 
described by, if c is concentration; r, radius and t, 
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time, 

ac D[a2c 2ac I ( a ) 2  d a  a c  

77 = L o P  + - - ~ (1)  r ~r dt Or 

where s = (1 - c,v)  is Scriven's volume change par- 
ameter and the rate of  change of size of  the sphere is 

d t  = C s ( 1 -  car) -&r = c s - ( 1 -  e)Ca -&r 

(2) 

The term (1 - e) represents the ratio of the volume 
occupied by a mole of solute in the solution to that 
which it occupies in the sphere. 
The boundary and initial conditions are 

c(a) = c a; t >~ O, 

c(oo) = coo; t >l O, 

c(r) = Coo; r > a , t =  O. 

Using the chosen dimensionless variables F = 
(c - c ~ o ) / [ c s -  c~(1 - e)], e = r/ao, R = a/ao and 
z = D t / a  2 transforms Equations 1 and 2 into 

OF O2F 2 O F  / R \ 2  d R  OF 
~z - ~ + - -  - ~ ~ , e )  (3) e ae dz Oe 

and 

d--~- = ' (4) 

whi ls t  the bounda ry  cond i t ions  become 

F(oo) = 0; z > 0, 

F(R) = F a = (c a - c~o)/[Cs -- ca(1 - ~)]; z >~ 0, 

F(e)  = 0; e > R ; z  = 0. 

An implicit finite difference technique was 
employed to solve Equations 3 and 4 [11]. This method 
uses a transformation of  the space variable into 
x = e / R  to immobilize the interface. Variable space 
and time mesh sizes were used and the radial mesh 
points were redistributed every ten time steps to keep 
the concentration differences less than 1% between 
adjacent points; as the concentration varies smoothly 
in the tail of  the distribution, the ratio of the 
amplitudes of  adjacent spaces was there kept below 
1.25. Time increments were computed sequentially, 
using the rate of  change of size ( d R / d z )  to prevent AR 
exceeding 0.01R but time increments were also not 
allowed to exceed 2% of the actual time. The initial 
concentration profile, corresponding to a 1% change 
in radius, was computed from the error function solu- 
tion for a flat slab [12]. 

Lacking general analytical solutions for dissolving 
spheres, the accuracy of  these techniques was verified 
by comparing the computed results for asymptotic 
growth from finite initial size with the equivalent exact 
solutions for growth from zero obtained by Scriven, 
see Cable and Frade [4]. Very close agreement was 
demonstrated for rate of  growth, the shape of  the 
concentration profile and overall conservation of the 
mass of  solute transferred into the sphere, for wide 
ranges of  the parameters involved. Since the compu- 
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Figure 1 Normalized radius- t ime curves for dissolving spheres with 
= 1 and E d = 0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100 and 

1000 (reading from top to bottom). + + + shows the quasi-steady 
state solution. 

tations are performed in terms of the space variable 
x = e / R  the method will perform just as well for a 
collapsing diffusion field as for an expanding one and 
verification for growing spheres is considered a suf- 
ficient test. 

3. General trends 
Figs 1 and 2 show a range of  normalized radius- t ime 
curves for the diffusion controlled dissolution of  
spheres obtained by these finite difference methods; 
the corresponding times needed for dissolution are 
given in Table I. A typical radius- t ime curve first 
shows a decrease in rate of  change of  size but an 
increase in the latter stages; the inflexion occurs quite 
early for small values of  the effective solubility Fd but 
is found in only the last stages for large values of E~. 
Comparison of  the results given in Table I with those 
given by Cable and Evans [9] shows that the comput- 
ing methods used in that work were insufficiently 
refined even for low solubilities because a very accur- 
ate estimate of  concentration gradient at the interface 
is required. 

Fig. 1 shows results for e = 1, that is, no change in 
the volume of the solution, and is thus typical of  gas 
bubbles. Fig. 2 shows results for e = 0 which corre- 
sponds to the volume of the whole system remaining 

T A B L E  1 Dimensionless times (zd) for complete dissolution of 
a sphere 
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Figure 2 Normalized radius- t ime curves for a = 0 and F, = 0.001, 
0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10 and 100, the dashed line shows the 
quasi-steady state solution. 

constant and may be considered a reasonable approxi- 
mation for the dissolution of many solids. Table I 
shows that the value of e has little effect on the time for 
complete dissolution when solubility is small 
(F, < 0.01) but has a growing influence as F, increases 
above 0.1, the effect becoming very large at high values. 

The normalized curves shown in Figs 1 and 2 sug- 
gest that the solutions tend to a unique regime for very 
small solubility (F,); this is discussed in the next sec- 
tion. Fig. 1 does not suggest any approach to a typical 
regime for large F, except to indicate that the initial 
stage becomes increasingly faster than the last stages. 
Understanding of these trends must take into account 
the spherical symmetry of the system and the role of 
radial convection which competes with diffusion in 
determining the evolution of the concentration 
profiles for moderate and high solubilities. Enhance- 
ment of rate of dissolution during the final stage, 
which occurs in all cases, is not expected of solutions 
based on the behaviour of spheres of constant size or 
results for growing spheres when the possible influ- 
ence of surface tension is neglected. 

4. Limiting solutions 
The limiting quasi-steady state solution for very small 
F, is readily obtained by neglecting convection and 
accumulation close to the interface. As either d R / d z  or 
OF/Oe becomes very small the convective term in 
Equation 3, e(R/e)2(dR/dz)OF/Oe, also becomes very 
small and may be neglected. Thus Equation 3 becomes 

e 20e e27e = 0 (5) 

and on integrating from e = R, F = F~, 

- R ' (6) 

F = F, (R/e) ;  e >1 R. (7) 

Combining Equations 4 and 6 thus leads to 

R: = 1 - 2F, z (8) 

and some of the results already given are replotted in 
this form in Fig. 3; it is seen that Equation 8 is good 
only for F, < 0.001. 

Figure 3 The steadily increasing deviation from the quasi-steady 
state approximation (dashed line) as solubility increases, e = 1, 
F, = 0.0001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1 (reading from top to 
bottom). 

Duda and Vrentas [10] used a quasi-steady state 
approximation which includes the effect of convec- 
tion; their solution reduces to 

R 2 = 1 - 2 [ l n ( l  f - - ~ +  (1 - e))_]Faz (9) 

However, the quasi-steady state approximation 
applies only to quite low solubilities (F, < 0.01), for 
which Equations 8 and 9 are almost the same and 
convection unimportant. This is also shown by 
Table I where it is seen that times to dissolve are 
almost independent of ~ for F~ < 0.01. 

With F~ > 0.1 the deviations from the quasi-steady 
state solution become distinctly dependent on the 
value of F a, indicating the possibility of estimating 
both solubility and diffusivity from sufficiently accur- 
ate experimental data, as suggested by Brown and 
Doremus [13]. This is not possible for small values of 
F~ because the shape of the normalized radius-t ime 
curve is insensitive to F~. 

Intuition may suggest that the behaviour for suf- 
ficiently large Fa should approach that of a flat slab 
because the concentration profile will occupy a dis- 
tance much smaller than R. According to Crank [12]. 
this is 

R = 1 - 2F, zx/-~ (10) 

Computed results for moderate and large values of Fa 
and a = 1 are plotted in this form in Fig. 4; it is seen 
that the flat slab approximation is reasonable for 
1 > R > 0.8 in all cases and this represents dis- 
solution for nearly half the total mass. However, this 
approximation neglects the increase in the volume of 
solution with increasing radius and thus predicts 
slower dissolution than the proper solution for low 
and moderate solubilities because of the effect on the 
concentration profile. On the other hand, the flat slab 
model predicts excessively fast dissolution for large F~ 
because it ignores the accumulation of solute near the 
interface imposed by the rapidly decreasing size of the 
sphere and the consequent inevitable increase in bound- 
ary layer thickness. During the early stage diffusion 
occurs in only a thin boundary layer, which accounts 
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Figure 4 Devia t ions  f rom the flat s lab a p p r o x i m a t i o n  (dashed  line) 
for E = 1 and  f.~ = 1000, 100, 20, 10, 5, 2 and  1 ( reading f rom top  
to bo t tom) .  

for the agreement with the flat slab model, and this 
happens because the velocity in the boundary layer 

u(r) = e(a/r)2da/dt, (11) 

depends only on time provided that (r - a) ~ a. 
If  e # 1 the volume of the solution changes with 

time and there is a discontinuity in velocity at the 
interface, that is u(a) # da/dt. The flat slab 
approximation thus becomes increasingly poor as e 
departs from unity. 

Fig. 4 also shows that for very high solubility 
(Fa > 100) the normalized radius curves tend to con- 
verge to a common form when plotted against F~z 1/2, 
at least for R > 0.4, but this does not correspond to 
any obvious approximation. 

The quasi-stationary approximation is based on the 
concentration distribution developed around a sphere 
of constant radius [5], which makes the concentration 
gradient at the surface of the sphere a function of 
both time and sphere radius. When combined with 
Equation 4 this gives 

dR/dz = -F~  + (12) 

For sufficiently short times and small values of bound- 
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Figure 5 C o m p a r i s o n  of  c o m p u t e d  t imes to dissolve (zd) with the 
predict ions (z') given by (1) quas i - s teady  state, (2) flat s lab and  
(3) quas i - s ta t ionary  a p p r o x i m a t i o n s  for e = 1. 

ary layer thickness (large Fa) this becomes identical 
with the flat slab model (Equation 10): for very small 
solubility, hence very long times, Equation 8 results. 
Fig. 5 shows how the times for complete dissolution 
given by the flat slab, quasi-steady state and quasi- 
stationary approximations compare with those given 
by the full numerical solutions for e = 1. It is clear 
that none of these approximations is very usefill over 
the range of solubilities often of  interest, (Fa > 0.01) 
but both the steady state and stationary models are 
acceptable for very small solubilities. The fact that two 
of the results converge for F a > 50 does not show 
them to be correct in that range. 

5. Concentrat ion  d is tr ibut ions  
Analysis of concentration profiles helps to understand 
the development of boundary layers and the factors 
likely to influence their evolution. Fig. 6 shows con- 
centration distributions typical of very low F~; the 
dashed lines show the quasi-steady state predictions 
and the full lines the computed numerical results. The 
two sets of curves always agree well close to the inter- 
face although some differences are usually seen in the 
tails. However, the two curves are almost identical for 
R = 0.5. This approximation thus gives reliable 
predictions of R(z) for very low solubility, the con- 
centration gradient at the interface increasing steadily 
as size decreases according to Equation 6. 

With large values of solubility (F~), solute accumu- 
lates close to the interface and the radial convection 
produces some features not expected in Fickian dif- 
fusion. Fig. 7 shows computed concentration profiles 
for a dissolving sphere with F~ = 10, ~ = 1. When the 
sphere has become quite small, R ~< 0.25, the profiles 
show inflexions (the second derivative of concen- 
tration becomes negative) near the interface. This 
results from the forced contraction of the volume of 
the reservoir available to contain the solute already 
transferred to the solution as the sphere shrinks. This 
effect has not been seen with other geometries or 
spheres of either constant or increasing size. The way 
in which space and time mesh sizes are automatically 
adjusted periodically guarantees that these unexpected 
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Figure 6 C o m p a r i s o n  of  concen t ra t ion  profiles at var ious  stages o f  
dissolut ion,  f rom right  to left R = 0.9, 0.5, 0.25, 0.1, and  0.05, for 

- 1, F~ = 0.0001. - -  C o m p u t e d  results,  - - quas i - s teady  
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Figure 7 Computed  concentrat ion profiles at various stages of  dis- 
solution, f rom right to left R = 0.9, 0.5, 0.25, 0.1 and 0.05, for 
e =  1, F~ = 10. 

features of the concentration profiles are not due to 
errors in the finite difference procedures used here. 

Confirmation that radial convection can be respon- 
sible for inflexions in concentration profiles is shown 
in Fig. 8 for F~ = 100. If  transport of  solute were 
exclusively due to convection a point at which con- 
centration Fl = F(el, RI) was originally at e~ would 
move to e2 when radius of the sphere decreased from 
R1 to R2 according to the relation 

e~ - R] = e 3 = R 3, (13) 

so that 

c(F1 ) = [~o~ _ R~ -'l- R3 ]  1/3 (t4) 

The dashed curves in the Fig. 8 show the effect of  
radial convection alone, calculated using this relation, 
on the concentration profile for R = 0.25 when the 
radius has further decreased to R = 0.1 and 0.05. 
These curves show an inflexion and differ only a little 
from the profiles computed for these radii by the full 
numerical solution, including diffusion, which are 
shown by full lines. This extreme case clearly demon- 
strates that the accumulation of solute near the inter- 
face imposed by radial convection is largely respon- 
sible for the increasingly slower later stage seen in 
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Figure 8 Computed  concentrat ion profiles at R = 0.25, 0.1 and 
0.05 for e = I, F~ = 100. The dashed lines show the effect of  radial 

convection alone on the profile for R = 0.25. 

Figure 9 Computed  concentrat ion profiles for s = l, F~ = 1 at 
radii ( f rom right to left) R = 0.9, 0.5, 0.25, 0.1 and 0.05. 

Fig. 2 when solubility becomes very large (F, > 10). 
For  Fa = 1000 and e = 1 the sphere shrinks to 
R = 0.1 in only about 11% of the time needed for 
complete dissolution. 

The quasi-steady state solution (Equation 7) illus- 
trates the role of  spherical geometry for very low solu- 
bility for which it makes the concentration gradient at 
the interface nearly proportional to 1/RZ-so that the 
rate of dissolution keeps increasing as the sphere 
shrinks. 

For intermediate values of solubility, especially 
0.1 < F a < 10, the concentration profiles show a 
progressive transition. At first behaviour is similar to 
a flat slab but later becomes increasingly affected by 
radial convection. A typical case is shown in Fig. 9 and 
no qualitatively unexpected features are seen. 

For  e < 1 the volume of the solution increases as 
dissolution proceeds and this extra factor contributes 
to expansion of  the boundary layer. When e = 0 the 
liquid remains motionless but the movement of the 
boundary distorts the concentration profiles that dif- 
fusion alone might be expected to produce. Fig. 10 
shows that this is sufficient to cause inflexions in the 
concentration profiles for large F,. Note that an 
inflexion already exists for R = 0.9. The evolution of 
concentration profiles lies between the extremes 
already discussed for 0 < e < 1. If  e should be nega- 
tive radial convection would play an even greater part 
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Figure 10 Computed  concentrat ion profiles for 8 = 0, F a = I0 at 
radii ( from right to left) R = 0.9, 0.5, 0.25, 0.1 and 0.01. 
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because the liquid would then flow in the opposite 
direction to the movement of the interface. 

The examples given in Figs 7, 8 and 10 show that 
concentration profiles of sigmoidal shape do not 
necessarily imply that a process is controlled by non- 
Fickian diffusion [14] or that diffusivity is strongly 
concentration dependent. 

6. The design of experiments 
The medium surrounding the sphere has been assumed 
infinite: this is experimentally both unattainable and 
undesirable. It is usual to make experimental systems 
as small as possible to minimize the development of 
accidental bulk convection as well as to aid manipu- 
lation and observation. It is therefore desirable to 
establish criteria for selecting the minimum size of the 
whole system relative to the initial size of the sphere. 
The criterion chosen was the radius at which the 
dimensionless concentration had increased by 1% 
when the sphere had shrunk to R = 0.05; these results 
are shown in Table II. The size of the spherical shell 
(r*/ao) needed to accommodate the diffusion field 
increases as solubility decreases and, for high solubil- 
ity, as e decreases. These results do not impose serious 
problems in the design of experiments except for 
Fa < 0.1. This criterion does not consider the develop- 
ment of the spherically symmetrical velocity field 
which would require a larger volume. For example, 
dissolution of a gas bubble, e = 1, would cause a 
12.5% change in the volume of the whole system if its 
initial size were only twice as big as the initial bubble 
and using a cylinder with r*/ao = 2 might not be 
satisfactory even for Fa = 2. 

7. Conclusion 
Although analytical solutions are possible for growth 
of spheres from zero initial size, no such solutions are 
possible for growth or dissolution from finite initial 
size. Accurate and versatile numerical methods have 
therefore been developed to solve the differential 
equations describing these cases. The techniques used 
were designed to function efficiently for either growth 
or dissolution and for very wide ranges of the relevant 
parameters. Extensive tests of computed results for 
growing spheres against the analytical results for size 
as a function of time and also the concentration distri- 
butions have already been reported. The excellent 
agreement found is considered sufficient evidence that 

T A B L E  II  Estimated size (r*/ao) of the shell needed to accom- 
modate the diffusion field of a dissolving sphere 

F~ 

0 1 

0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1 
2 
5 

10 

13.7 
11.1 
7.81 
6.03 
4.70 
3.47 
2.86 
2.45 
2,11 
1.95 

13.7 
10.9 
7.77 
5.93 
4.48 
3.06 
2.28 
1.69 
1.14 

<1 

the numerical procedures developed are accurate for 
dissolution as well as growth. The main features of the 
numerical solutions for the diffusion controlled dis- 
solution of isolated spheres are therefore reported 
here. Time transient effects generally persist through- 
out the whole course of dissolution and, as a result, 
there are no generally valid approximations for radius- 
time curves, times to dissolve completely, or concen- 
tration distributions: this is a marked contrast to the 
behaviour of growing spheres. Figs 1 and 2 together 
with Table I allow the predicted behaviour of a wide 
range of important cases to be deduced. 

For sufficiently low solubilities, E~ = 0.001, a 
quasi-steady state solution is valid but no simple 
approximation is very useful for higher solubilities. A 
flat slab model fails for high solubilities except during 
a relatively short initial stage, 1 > R > 0.8. The 
frequently used analogy between heat conduction [15] 
and mass transfer is not generally applicable to dis- 
solution because it entirely neglects the important 
effects of radial convection and motion of the boun- 
dary. Examination of concentration profiles developed 
during dissolution has shown that inflexions can be 
produced by the radial convection and motion of the 
boundary accompanying dissolution, although no 
such inflexions occur for spheres of constant or 
increasing size with equivalent parameters. The 
development of sigmoidal concentration distributions 
around dissolving spheres thus does not demonstrate 
that diffusion is non-Fickian or that diffusivity is 
strongly concentration dependent but is due to the 
influence of spherical geometry. The effects of 
concentration-dependent diffusivity will be reported 
elsewhere [3]. 

The partial molar volume of the solute in the solu- 
tion has trivial effects for very small solubilities but 
becomes increasingly important as solubility increases 
and must be taken into account for moderate and high 
solubilities (Fa > 0.1) if accurate results are required. 
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